2,537 research outputs found

    Heliocentric distance dependencies of the C2 lifetime and C2 parent production rate in comet P/Brorsen-Metcalf (1989o)

    Get PDF
    Comet P/Brorsen-Metcalf (1989o) has been extensively observed in the visible and in the ultraviolet during its latest apparition of summer 1989. In this paper we report a preliminary determination of the C2 production rates and lifetimes and we compare those rates to the H2O production rates obtained from UV data

    Ground-based monitoring of comet 67P/Churyumov-Gerasimenko gas activity throughout the <i>Rosetta</i> mission

    Get PDF
    Simultaneously to the ESA Rosetta mission, a world-wide ground-based campaign provided measurements of the large scale activity of comet 67P/Churyumov-Gerasimenko through measurement of optically active gas species and imaging of the overall dust coma. We present more than two years of observations performed with the FORS2 low resolution spectrograph at the VLT, TRAPPIST, and ACAM at the WHT. We focus on the evolution of the CN production, as a tracer of the comet activity. We find that it is asymmetric with respect to perihelion and different from that of the dust. The CN emission is detected for the first time at 1.34 au pre-perihelion and production rates then increase steeply to peak about two weeks after perihelion at (1.00±0.10) ×1025 molecules s−1, while the post-perihelion decrease is more shallow. The evolution of the comet activity is strongly influenced by seasonal effects, with enhanced CN production when the Southern hemisphere is illuminated

    Evolution in the iron abundance of the ICM

    Get PDF
    We present a Chandra analysis of the X-ray spectra of 56 clusters of galaxies at z>0.3z>0.3, which cover a temperature range of 3>kT>153> kT > 15 keV. Our analysis is aimed at measuring the iron abundance in the ICM out to the highest redshift probed to date. We find that the emission-weighted iron abundance measured within (0.150.3)Rvir(0.15-0.3) R_{vir} in clusters below 5 keV is, on average, a factor of 2\sim2 higher than in hotter clusters, following Z(T)0.88T0.47ZZ(T)\simeq 0.88 T^{-0.47} Z_\odot, which confirms the trend seen in local samples. We made use of combined spectral analysis performed over five redshift bins at 0.3>z>1.30.3> z > 1.3 to estimate the average emission weighted iron abundance. We find a constant average iron abundance ZFe0.25ZZ_{Fe}\simeq 0.25 Z_\odot as a function of redshift, but only for clusters at z>0.5z>0.5. The emission-weighted iron abundance is significantly higher (ZFe0.4ZZ_{Fe}\simeq0.4 Z_\odot) in the redshift range z0.30.5z\simeq0.3-0.5, approaching the value measured locally in the inner 0.15Rvir0.15 R_{vir} radii for a mix of cool-core and non cool-core clusters in the redshift range 0.1<z<0.30.1<z<0.3. The decrease in ZFeZ_{Fe} with zz can be parametrized by a power law of the form (1+z)1.25\sim(1+z)^{-1.25}. The observed evolution implies that the average iron content of the ICM at the present epoch is a factor of 2\sim2 larger than at z1.2z\simeq 1.2. We confirm that the ICM is already significantly enriched (ZFe0.25ZZ_{Fe}\simeq0.25 Z_\odot) at a look-back time of 9 Gyr. Our data provide significant constraints on the time scales and physical processes that drive the chemical enrichment of the ICM.Comment: 4 pages, 4 figures, to appear in the Proceedings of "The Extreme Universe in the Suzaku Era", Dicember 2006, Kyoto (Japan

    Out-of-equilibrium mechanochemistry and self-organization of fluid membranes interacting with curved proteins

    Get PDF
    The function of biological membranes is controlled by the interaction of the fluid lipid bilayer with various proteins, some of which induce or react to curvature. These proteins can preferentially bind or diffuse towards curved regions of the membrane, induce or stabilize membrane curvature and sequester membrane area into protein-rich curved domains. The resulting tight interplay between mechanics and chemistry is thought to control organelle morphogenesis and dynamics, including traffic, membrane mechanotransduction, or membrane area regulation and tension buffering. Despite all these processes are fundamentally dynamical, previous work has largely focused on equilibrium and a self-consistent theoretical treatment of the dynamics of curvature sensing and generation has been lacking. Here, we develop a general theoretical and computational framework based on a nonlinear Onsager&rsquo;s formalism of irreversible thermodynamics for the dynamics of curved proteins and membranes. We develop variants of the model, one of which accounts for membrane curving by asymmetric crowding of bulky off-membrane protein domains. As illustrated by a selection of test cases, the resulting governing equations and numerical simulations provide a foundation to understand the dynamics of curvature sensing, curvature generation, and more generally membrane curvature mechano-chemistry

    A simple and efficient method for predicting protein-protein binding sites.

    Get PDF
    In this work, we propose a strategy for predicting binding sites by exploiting the characteristic of core and rim regions of binding sites mentioned above, while using simple and well-know pattern recognition techniques.X-meeting 2007

    Where does the gas fueling star formation in BCGs originate?

    Get PDF
    We investigate the relationship between X-ray cooling and star formation in brightest cluster galaxies (BCGs). We present an X-ray spectral analysis of the inner regions, 10-40 kpc, of six nearby cool core clusters (z<0.35) observed with Chandra ACIS. This sample is selected on the basis of the high star formation rate (SFR) observed in the BCGs. We restrict our search for cooling gas to regions that are roughly cospatial with the starburst. We fit single- and multi-temperature mkcflow models to constrain the amount of isobarically cooling intracluster medium (ICM). We find that in all clusters, below a threshold temperature ranging between 0.9 and 3 keV, only upper limits can be obtained. In four out of six objects, the upper limits are significantly below the SFR and in two, namely A1835 and A1068, they are less than a tenth of the SFR. Our results suggests that a number of mechanisms conspire to hide the cooling signature in our spectra. In a few systems the lack of a cooling signature may be attributed to a relatively long delay time between the X-ray cooling and the star burst. However, for A1835 and A1068, where the X-ray cooling time is shorter than the timescale of the starburst, a possible explanation is that the region where gas cools out of the X-ray phase extends to very large radii, likely beyond the core of these systems.Comment: to appear in A&

    Tracing the evolution in the iron content of the ICM

    Get PDF
    We present a Chandra analysis of the X-ray spectra of 56 clusters of galaxies at z>0.3, which cover a temperature range of 3>kT>15 keV. Our analysis is aimed at measuring the iron abundance in the ICM out to the highest redshift probed to date. We find that the emission-weighted iron abundance measured within (0.15-0.3)R_vir in clusters below 5 keV is, on average, a factor of ~2 higher than in hotter clusters, following Z(T)~0.88T^-(0.47)Z_o, which confirms the trend seen in local samples. We made use of combined spectral analysis performed over five redshift bins at 0.3>z>1.3 to estimate the average emission weighted iron abundance. We find a constant average iron abundance Z_Fe~0.25Z_o as a function of redshift, but only for clusters at z>0.5. The emission-weighted iron abundance is significantly higher (Z_Fe~0.4Z_o) in the redshift range z~0.3-0.5, approaching the value measured locally in the inner 0.15R_vir radii for a mix of cool-core and non cool-core clusters in the redshift range 0.1<z<0.3. The decrease in Z_Fe with redshift can be parametrized by a power law of the form ~(1+z)^(-1.25). The observed evolution implies that the average iron content of the ICM at the present epoch is a factor of ~2 larger than at z=1.2. We confirm that the ICM is already significantly enriched (Z_Fe~0.25Z_o) at a look-back time of 9 Gyr. Our data provide significant constraints on the time scales and physical processes that drive the chemical enrichment of the ICM.Comment: 6 pages, 6 figures, to appear in the Proceedings of "Heating vs. Cooling in Galaxies and Clusters of Galaxies", August 2006, Garching (Germany
    corecore